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Preface

The model investigation reported herein was conducted for the U.S. Army
Engineer District, Louisville (ORL), and was authorized by the Office, Director-
ate of Civil Works, Headquarters, U.S. Army Corps of Engineers, in an indorse-
ment dated 1 August 1990 to the Division Engineer, U.S. Army Engineer
Division, Ohio River. The study was conducted by the U.S. Army Engineer
Waterways Experiment Station (WES) during the period August 1990 to March
1997.

During the course of the model study, representatives of ORL and other navi-
gation interests visited WES many times to observe special model experiments
and to discuss the results of those experiments. ORL was informed of the
progress of the study by monthly progress reports and a special presentation at
the conclusion of each experiment.

Thefirst-line review of this report was conducted by Mr. T. J. Pokrefke,
Chief, Modeling Systems Branch, Estuaries and Hydrosciences Division, Coastal
and Hydraulics Laboratory (CHL). The principal investigator in immediate
charge of the model study was Mr. R. T. Wooley, assisted by Mr. J. W. Sullivan
and Ms. D. P. George, al of the Navigation Branch, Navigation and Harbors
Division, CHL. This study was conducted under the direct supervision of
Dr. L. L. Daggett (retired), Chief, Navigation Division, CHL, and under the
general supervision of Mr. R. A. Sager, Assistant Director of CHL, and Dr. J. R.
Houston, Director of CHL.

Director of WES during preparation and publication of this report was
Dr. Robert W. Whalin. COL Robin R. Cababa, EN, was Commander.

The contents of thisreport are not to be used for advertising, publication or
promotional purposes. Citation of trade names does not constitute an official
endorsement or approval for the use of such commercial products.
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Conversion Factors, Non-Sl to
S| Units of Measurements

Non-SI units of measurement used in this report can be converted to Sl units

asfollows:
Multiply By To Obtain
cubic feet 0.02831685 cubic meters
feet 0.3048 meters
miles (U.S. statute) 1.609344 kilometers




1 Introduction

Location and Description of Prototype

McAlpine Locks and Dam are on the Ohio River at the northwestern end of
Louisville, KY (Figure 1), 606.8 miles' below Pittsburgh, PA. The structures,
including the dam, canal, and locks, extend from mile 604.4 to mile 607.4. The
upper pool of the dam extends approximately 75 miles upstream to Markland
Locks and Dam near Warsaw, KY .

Precipitation over the Ohio River basin above Louisvilleis generaly well dis-
tributed throughout the year, but flood-producing rainfall occurs generally in the
winter and early spring. Flood stage of €l 431.0% at Louisville (upstream of the
dam) is reached with an average frequency of oncein 15 years. The highest
flood of record reached a peak elevation of 460.1 at the dam in January 1937 and
had a maximum discharge of 1,110,000 cfs. The second highest flood of record
occurred in March 1945 with a peak elevation of 450.1 and a maximum dis-
charge of 843,000 cfs. Most of the areas next to the project, including Louisville
and New Albany, Clarksville, and Jeffersonville, IN, are protected from flooding
by levees and floodwalls.

History of Navigation Improvements on the
Ohio River

Inits natural state, the Ohio River was obstructed throughout its length by
snags, rocks, gravel, and sandbars, which rendered navigation extremely difficult
and hazardous. Controlling depths during low water were 1 to 2 ft from Pitts-
burgh, PA, to the river mouth at Cairo, IL. From about 1824 to 1910, funds were
appropriated periodically for navigation improvements, which consisted princi-
pally of removal of snags and wreckage from the channel and construction of
stone training dikes to contract the channel and increase the scouring action of
theriver. During this period, the principal Ohio River traffic consisted of down-
bound coal tows assembled in the Pittsburgh harbor area and moved downstream
during higher river stages that provided sufficient depth.

1 A table of factors for converti ng non-S| units of measurement to Sl unitsis found on page vi.
2 All elevations (el) cited herein arein feet referred to the Ohio River Datum.
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Initially, coal transport interests opposed the construction of locks and dams.
They wanted to use regulatory works to maintain required depths and thus keep a
free passage under open-river conditions. However, this was not possible with-
out constricted channel's and excessive vel ocities, which would be hazardous to
downstream navigation and would render upstream navigation impossible.
Because of these conditions, the need for locks and dams was finally recognized.
To eliminate obstacles to downstream traffic, a movable dam was adopted that
could be lowered to the bed of the river, thus permitting free passage of down-
bound tows when natural flows provided sufficient depths. Since loaded
upbound traffic was an extremely small part of the total traffic at that time and
no material change was foreseen, little consideration was given to upbound
traffic.

The River and Harbor Act of 25 June 1910 provided for the construction of
54 locks and dams. During construction, certain substitutions and elimination of
structures were made in the plans so that the project consisted of 50 locks and
dams when completed in 1929. After its completion, the project was further
modified so that the system was composed of 46 locks and dams; of these, 42
were movable, 1 was fixed, and 3 were nonnavigable, gate-controlled structures.
The dams were designed to maintain a minimum slack-water channel of 9 ft.
Pool liftsranged from 5.6 to 37.0 ft. All dams had at least one 110- by 600-ft
lock, and five had an auxiliary lock; four of the auxiliary locks were 56 by
360 ft.

The original navigation projects, as modified in the 1930's, comprised
46 dam-lock structures and the Louisville and Portland Canal (L& P Canal) at
Louisville. A modernization program, initiated in 1954, provides for continuing
the 9-ft project depth by the progressive replacement of existing structures by
19 high-lift structures. The modern units consist of nonnavigable gated dams, a
main lock (110 by 1,200 ft), and a second lock (110 by 600 ft), except at Smith-
land, which has two 1,200-ft locks. McAlpine has athird lock chamber (56 by
360 ft), which is not operable.

Conditions of Existing Structures

Reconstruction of Locks and Dam 41 (McAlpine Locks and Dam) was part of
the general plan of improvement of navigation on the Ohio River. No change
would be made to the existing upper pool elevation of 420.0, which would pro-
vide navigable depths to Markland Locks and Dam. Modernization of McAlpine
Locks and Dam was begun in 1954, and by 1962, a new 110- by 1,200-ft lock
was in operation. The modernization plan aso included reconstruction and
widening of the upper lock entrance canal, installation of a surge basin in this
canal, and provision for a nonnavigable, gate-controlled dam in place of the
Boulé dam and Chanoine wicket dam. The new dam has since been completed
and consists of nine tainter gates, four near the powerhouse and five just above
the Pennsylvania Railroad bridge, and a fixed weir with acrest at el 422.0 at the
four downstream gates, incrementally raised to a crest elevation of 423.0 at the
five upstream gates.

Chapter 1 Introduction



Present Development Plan

The McAlpine Navigation Feasibility Report for the project was completed
and forwarded to the U.S. Army Engineer Division, Ohio River, in 1989. The
provisional recommended plan consists of constructing an additional 110- by
1,200-ft lock in place of the existing auxiliary chamber. Thiswould result in two
locks 110 ft wide by 1,200 ft long. The new lock would be parallel to the exist-
ing 1,200-ft lock, with the upper gates in approximately the same location as the
existing lock upper gate. A guide wall would extend upstream 1,275 ft beyond
the upper miter gate monolith and tie into the existing canal wall. A south guide
wall would extend 1,200 ft beyond the lower miter gate monolith.

Need for and Purpose of Model Study

The general design of the new 1,200-ft-long lock was complicated by its
proximity to the existing 1,200-ft lock, its placement at the downstream end of a
long approach canal, and the restricted area downstream of the lock available for
lock discharge laterals. Because of the many design factors that had to be con-
sidered, a physical model was considered necessary to evaluate navigation con-
ditionsin both the upper and lower approaches to the locks. Surges, created by
filling the existing 1,200-ft lock, have the potential for causing adverse naviga-
tion conditionsin the L& P Canal. Filling two 1,200-ft locks from the canal
could create a more serious problem in the future. The comprehensive model
study was necessary to (a) evaluate the effect of surges on tows near the locks,
(b) develop guidance for future project operations to reduce or eliminate prob-
lems associated with lock filling, (c) evaluate bendway widening near the locks,
(d) evaluate necessary clearances between tows and resolve other questions
relating to multiple tow movements in the canal, and (e) investigate the impact of
lock emptying on navigation in the lower approaches to the locks.

Chapter 1 Introduction



2 The Model

Description

The model is a1:80-scale fixed-bed model reproducing the L& P Canal, the
existing locks, alimited section of the Ohio River immediately upstream of the
canal, that part of the river channel between Shippingport Island and the fixed
crest weir connecting the upper and lower spillways, and the lower approach to
the locks (Figure 2). Upstream of the lower spillway, the right descending model
limits followed the alignment of the fixed-crest weir from the upper gated spill-
way to the lower gated spillway. However, as the model would not be reproduc-
ing any riverflows that would create flow over the fixed-crest weir, the crest
elevation of the weir was not reproduced in the model. The model was con-
structed of a sand-cement mortar molded to sheet metal templates except for part
of the main river channel between the Conrail Railroad bridge and the hydro-
power plant, which was molded in sand. The L& P Canal and the lower lock
approach were molded to a1991 hydrographic survey. The remaining portion of
the model was molded to recent hydrographic and topographic surveys. The
locks, powerhouse, gated spillway, and bridges were constructed of sheet metal.

Scale Relations

The model was built to an undistorted scale of 1:80, model to prototype, to
reproduce accurately velocities, crosscurrents, and eddies affecting navigation.
Other scale ratios resulting from the linear scale ratio are as follows:

Scale Relation

Characteristic Dimension* Model:Prototype
Area A= |_|r2 1:6,400
Velocity V= Lr% 1:8.94

: Yo
Time T= |_r 1:8.94
Discharge D= |_r5/2 1:57,243
Roughness (Manning’s n) Manning’s n = Lrl/e 1:2.08
! Dimensions are in terms of length L.

Chapter 2 The Model
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Measurements of discharges, water-surface elevations, and current velocities can
be transferred quantitatively from model to prototype equivalents by these
relations.

Appurtenances

Water was supplied to the model by a 10-cfs pump operating in a circulating
system. The discharge was controlled and measured at the upper end by avalve
and venturi meter. Water-surface elevations were measured by 15 piezometer
gauges in the model channel connected to a centrally located gauge pit (Fig-
ure 2). Surgesin water-surface el evations were measured upstream of the locks
with five sonic water-level gauges placed aong the canal and in the main river
channel (Figure 3). Surges were measured downstream of the locks with four
sonic water-level gauges in the navigation channel downstream of the locks (Fig-
ure4). Surgesin current velocities were measured with a miniature velocity
meter at selected stations. A hinged tailgate was provided at the lower end of the
model to control the tailwater elevations downstream of the dam, and dlide-type
gates in the spillway were used to control the upper pool elevation. The flow
through the spillway was distributed across the lower channel by a baffling sys-
tem to simulate the current patterns that could be expected with normal spillway
flow.

Model Adjustment

A limited amount of prototype current directions and velocity measurements
was available; however, the data were taken with river discharges higher than
those used for model experiments. Therefore, current patterns at the entrance to
the model and in the river channel downstream of the dam were adjusted to
reflect normal patterns that occur with the channel shape reproduced. Prototype
measurements of changes in water-surface elevations and current velocities dur-
ing lock filling were available for five locations and one location, respectively,
asshown in Plates 1 and 2. The surface of the model was constructed of brushed
cement mortar to provide roughness (Manning's n) of about 0.0135, which corre-
sponds to a roughness in the prototype of about 0.028. With the model simulat-
ing conditions existing in the prototype at the time of the study, water-surface
elevations and current velocities were measured in the model during filling of
the existing 1,200-ft lock and compared with prototype data supplied by the
U.S. Army Engineer District, Louisville. Datain Plates 1 and 2 show the model
reproduced the prototype measurement with a reasonable degree of accuracy and
was adequate for the model study.

Chapter 2 The Model
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3 Experiments and Results

Tests were concerned primarily with the study of current patterns, measure-
ments of velocities and water-surface elevations, and the effects of currents on
the movement of the model tow, described in the next section, in the lock
approaches during lock operation.

Experiment Procedures

Thelargest surge in water-surface elevations and velocity of currents due to
lock filling or emptying occurs when the head differential between the upper and
lower poolsisthe greatest. Therefore, in collaboration with the Louisville Dis-
trict, adischarge with alarge head differential between upper and lower pools
was selected for all experiments. Prototype measurements were collected with a
total river discharge of 12,000 cfswith a head differential of about 36.5 ft; there-
fore, that discharge was selected for most experiments.

The riverflows were reproduced by introducing the proper discharge at the
upstream end of the model and manipulating the tailgate until the required tail-
water elevation was obtained. The upper pool was maintained by adjusting the
gates of the dam, maintaining a uniform opening for all gates. With the
12,000-cfs riverflow, all flow was passed through the lower spillway except
during lock filling.

Velocities and current directions were measured in the model by tracking the
movement of lighted floats with respect to ranges established for that purpose.
Confetti and dye were also used to show current patternsin eddies. Multiple-
exposure photographs recorded the current patterns with various conditions, and
aminiature current meter measured spot velocities at various stations during lock
operation. A radio-controlled model tow and towboat were used to study and
show the effects of currents on navigation. The model tow was equipped with
twin screws, Kort nozzles, and driving and flanking rudders, and was powered
by a small electric motor operating from batteriesin the tow. Thetow inthe
study represented fifteen 195-ft-long by 35-ft-wide standard barges with a
120-ft-long pusher. This provided an overall size tow of 1,095 ft long by 105 ft
wide, loaded to a draft of 9 ft. The towboat operated in forward or reverse at
various speeds and with variable rudder settings. It was calibrated to the speed
of a comparable-size prototype towboat moving in slack water. To maintain

Chapter 3 Experiments and Results



rudder control but not overpower the currents, the tow was operated 1 to 2 miles
per hour above the speed of the currents. The paths of tows were determined by
tracking the path of the light mounted on the tow with the video-tracking system
mounted overhead of the model. Velocities of the tows were measured with a
desktop computer equipped to calculate velocity based on the time required for
the tow to pass over a measured distance. This method provided detailed
information of the tow movement during the experiments.

The rate of lock filling and emptying was recorded by computer and com-
pared with the computed prototype curves. Each condition was subjected to a
minimum of three lock filling or emptying experiments; and if they were not
close to the computed curves, the experiment was repeated to obtain three exper-
iments with comparable curves. With most conditions, only three experiments
were necessary. Intheinterest of clarity, only one set of datais shown on the
plates.

Base Experiments (Existing Conditions)

Description

Base experiments were conducted with the model reproducing conditions
existing in the prototype at the time of the model study. These experiments pro-
vided information and data that could be used to evaluate the effects of proposed
modifications on water-surface el evations, current direction and vel ocities, and
navigation conditions. The following principal features were reproduced or sim-
ulated in the model (Figures 5 and 6):

a. Navigation locks located along the left bank at the downstream end of a
1.75-mile-long canal. The main lock had clear chamber dimensions of
110 ft wide by 1,200 ft long (Figure 6). The two auxiliary locks, which
were out of service, were between the main lock and left bank. The canal
was 500 ft wide with a bottom elevation of 405.0 (Figure 2).

b. A powerhouse located aong the left bank adjacent to the downstream end
of Shippingport Island and a four-gated spillway section located adjacent
to the powerhouse (Figure 2).

¢. The Conrail Railroad Bridge that crossesthe L& P Cana immediately
downstream of the entrance of the canal. A lift span provides vertical
clearance for navigation through the bridge. The left descending pier of
the navigation span is landward of the canal and the right pier is protected
by guard cells upstream and downstream of the pier. The horizontal clear-
ance between the left bank of the canal and the guard cellsis 241.5 ft
(Figure 7).

d. The Kansas and Illinois Railroad bridge that crosses the lower approach of
the locks immediately downstream of the locks (Figure 2). The left pier of
the navigation span was landward of the landside guide wall of the new

Chapter 3 Experiments and Results

11



Apnis Jo awn 1e Bunsixa suonpuod g ainbi4

mmmmmmmmmmmmmmmmmmmmmmmmmmmmmm
13A0N R

0
s B, 3dALOLOdd

aN3931

000 00
1334 NI S31vOS

Chapter 3 Experiments and Results

12



suonoas pue ue|d 320] 4-00Z‘T Bunsix3 "9 ainbiq

SSL—IVON

[N

SEI42RE]
vy 13

MO0 INMHILNID NYHL NOILO3S

G9¢y 14

vy 13

HEO.@:L TQS

STA 15+09.67A

D,@Ni ﬁ 0619 ﬁ 0°08¢1 |
0'ge s
GG 0Gl9 | 0'CIyl ﬁ ceetl ,
g 3 MIA NV 3 2
o o~ o™ o~
+ + %
[ls} = - s
s = 58— < <
2 B blob
00zt
MO T4 T
IVINI -
T~ P~y v
d o7 - - | ceetl |
———cBos—— A %007 14-00ZL X L4-0LL K , s
2 13 T T T A¢
L To.oq DL , 7 5 g = F-oor, | s'8g
0619 L Tr

IMVLINI

STA 3+30A
OUTLET 1
OUTLET 2

OUTLET 3

STA 22+18.5B

(92]
—

Chapter 3 Experiments and Results



ueds uonebineu abpuq peoljiey [reiuo)d 7 ainbi4

YSL—IVONW

&w

o

/W

% Py
JONVHVYITO TVLINOZIHOH 14—=G L¥ ¢

NVdS NOILVOIAVN

00

O

rf

oo

]

|

ANV ISl LJOdONIddIHS

J/

Chapter 3 Experiments and Results

14



lock and the right pier was riverward of the riverside guard wall of the
existing 1,200-ft lock. Therefore, the piers did not interfere with tows
entering and leaving the lower lock approach.

Results

Lock filling experiments. Experiments were conducted to evaluate the
effects of lock filling on the magnitude of surgesin the L& P Canal. Before
experiments were undertaken, the model lock filling system was adjusted until
the rate of lock filling was close to the curve devel oped from data furnished by
the Louisville District for the existing 1,200-ft lock. A comparison of model and
computed prototype filling curves shows close agreement (Plate 3). However,
near the end of thefilling cycle, the rate of filling was slower in the model. The
model simulated a 10-min filling time.

Surges in water-surface elevation dueto lock filling are shown in Plate 1.
These data show that the model result compares favorably with prototype meas-
urements. The initial drawdown of the water surface due to the lock filling was
in close agreement with the field data, in both time of occurrence and the amount
of drawdown. The field and model data show that arepetitive surgeis created in
the upper pool by lock filling. The largest change in water-surface elevation
occurs at station 1, which is close to the lock, and diminishes as the stations pro-
gress upstream toward the main river channel. Secondary surges occur asthe
filling cycle is completed and withdrawal of water from the canal stops. These
secondary surges may continue for several hours with diminishing heights.

Depending on the station observed, theinitial surge due to lock filling
occurred about 8 to 20 min after the start of filling the lock and decreased the
water-surface elevation about 1.1 ft at stations 1 and 2, 0.7 ft at station 3, and
0.4 ft at stations4 and 5 (Plate 1). A secondary surge occurred about 20 to
40 min after the start of filling, depending on the station observed, and increased
the water-surface elevation over the flat pool about 1.0 ft at station 1, 0.5 ft at
station 2, 0.2 ft at station 3, and less than 0.1 ft at stations 4 and 5. Datain
Plate 2 show the velocities of the currents generated by lock filling varied from a
positive 2.5 to anegative 1.1 fps at station 3, which isin the most restricted
section of the canal. A secondary surge occurred about 50 min after the start of
lock filling, which varied from a positive 1.3 to anegative 1.0 fps. The veloci-
ties of the currents were lower at stations 1 and 2 due to the cross section of the
canal being larger in these areas.

Lock emptying experiments. Experiments were conducted to evaluate the
effects lock emptying would have on navigation and the magnitude of surgesin
the lower approach of the locks. Before experiments were conducted, the model
lock emptying systems were adjusted until the rate of lock emptying was close to
the curve devel oped from data furnished by the Louisville District for the exist-
ing 1,200-ft lock. Comparison of model and computed prototype emptying
curves shows close agreement (Plate 4). However, near the end of the emptying
cycle, the rate of emptying was slower in the model. During the experiments,

Chapter 3 Experiments and Results
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each emptying cycle was recorded by computer and compared with the computed
prototype curve. Each condition was subjected to three lock emptying cycles,
and when they did not closely agree with the computed curve, the experiment
was repeated until three cycles with comparable curves were recorded. In the
interest of clarity, only one cycle is shown in the plates. The model simulated a
10-min emptying time. It should be noted that the existing 1,200-ft lock dis-
charges into the channel between the lock and Sand Island with the lower lock
approach being protected from the flow by a 1,200-ft-long guard wall.

Surges in water-surface elevation due to lock emptying are shown in Plate 5.
These data show that the water-surface elevation in the lower lock approach (sta-
tions 2 and 3) (Figure 4) changed less than 0.5 ft due to lock emptying. A surge
in water-surface elevation of about 0.7 ft was recorded at station 1, which wasin
the channel between the lock and Sand Island. Secondary surges were minor at
all stations.

Surgesin velocity of currents due to lock emptying are shown in Plate 6.
These data show surgesin velocity of about 2.8 fps at station 1, 0.6 fps at sta-
tions2 and 3, and 1.4 fps at station 4. Secondary surges were minor.

Plan A Experiments

Description

Plan A was the same as Existing Conditions except a second 110- by 1,200-ft
lock was added to the left of and parallel to the existing 110- by 1,200-ft lock.
The following were principal features of the new 1,200-ft lock (Figure 8):

a. A 110- by 1,200-ft lock was constructed in the place of the existing auxil-
iary chamber. The new lock was parallel to the existing 1,200-ft lock with
the center line of the locks separated 335.5 ft. The upper gate pintle of the
new 1,200-ft lock was aligned with the upper gate of the existing 1,200-ft
lock. The design of the new lock was amirror image of the existing lock.
However, the upstream guide wall of the new lock was different from the
existing lock.

b. The new lock had a 1,179.67-ft-long guide wall extending upstream from
the upstream end of its south wall. The downstream 435.0 ft of the wall
contained filling ports for the south lock wall. The remaining upstream
744.67 ft of guide wall was constructed on nineteen 18-ft-diameter cells
placed on 40-ft centers. This design provided ports for flow to move
through thewall. The tops of the ports were at el 419.0.

c. A 1,133.5-ft-long guide wall extended downstream from the downstream
end of the south lock wall. The guide wall consisted of a solid concrete
cap founded on twenty-eight 25.5-ft-diameter cells placed on 40-ft centers.
The tops of the ports were at el 382.0.

Chapter 3 Experiments and Results
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d. Thelock filling system consisted of the intake portsin the south guide
wall (Figures 9 and 10) and intake portsin the curved part of the upstream
end of the north lock wall (Figures 9 and 11).

e. Thenew lock had alock emptying system that provided a diffuser in the
lower lock approach immediately downstream of the lower miter gate to
carry one-half of the flow from lock emptying. The remaining one-half of
the flow was routed through a culvert extending from the north wall of the
new 1,200-ft lock. The culvert crossed under the existing 1,200-ft lock
and discharged through an existing discharge bucket into the back channel
between the existing 1,200-ft lock and Sand Island (Figure 12).

Results of lock filling experiments with Plan A conditions

Experiments were conducted to record surges in water-surface elevation and
current velocities. Surges were recorded during filling of each lock and during
filling of both locks with 0-, 10-, 20-, and 30-min delay between the start of fill-
ing of the second lock. These data are shown in Plates 7-16. The experiments
were conducted with atotal river discharge of 12,000 cfs. However, a series of
experiments was conducted with atotal river discharge of O cfsto evaluate the
sensitivity of the surgesto total riverflow. These experiments showed total
riverflow had some influence at stations 4 and 5, which were located in the main
river channel (Figure 3), but very little influence on the surgesin the L& P Canal.

Existing lock filling. Data presented in Plates 7 and 8 show that surgesin
water-surface elevation and current velocity created by filling the existing lock
were generally the same as with existing conditions. Depending on the station
observed, theinitial surge due to lock filling occurred about 8 to 20 min after the
start of filling the lock. Thisinitial surge decreased the water-surface elevation
about 1.1 ft at stations 1 and 2, 0.8 ft at station 3, and 0.3 ft at stations 4 and 5
(Plate 7). A secondary surge, which occurred about 20 to 40 minutes after the
start of filling, increased the water-surface elevation over flat pool about 0.9 ft at
station 1, 0.4 ft at station 2, 0.2 ft at station 3, and less than 0.1 ft at stations 4
and 5. Data presented in Plate 8 show that the velocities of the currents gener-
ated by lock filling varied from a positive 2.4 to a hegative 1.3 fps at station 3,
which islocated in the most restricted section of the canal. A secondary surge
occurred about 50 min after the start of lock filling that varied from positive
1.5to negative 1.3 fps. The velocities of the currents were less at stations 1 and
2 due to the cross section of the canal being larger in these areas.

Both locksfilling simultaneoudly. Filling both 1,200-ft locks simultane-
ously lowered the water-surface elevation about 2.1 ft at stations 1 and 2, 1.5 ft
at station 3, and 0.6 ft at stations 4 and 5 (Plate 9). Depending on the station
observed, areturn surge occurred about 20 to 40 min after the start of lock fill-
ing. Thissurge raised the water-surface elevation about 1.2 ft over flat pool at
stations 1 and 2, 0.3 ft at station 3, and less than 0.1 ft at stations4 and 5. Some
surging in water-surface elevation was still occurring at all stations approxi-
mately 140 min after the start of lock filling, with a change of 0.7 ft at station 1

Chapter 3 Experiments and Results
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being the largest. Data presented in Plate 10 show that the velocities of the cur-
rents generated by filling both locks simultaneously varied from a positive 3.9 to
anegative 2.2 fps at station 3. Approximately 130 min after the start of lock fill-
ing, the velocity of the currents was still fluctuating at station 3 from a positive
0.5to anegative 0.5 fps.

Both locksfilling, second lock delayed 10 min. When the start times of
filling the locks were separated by 10 min, the magnitudes of surges in water
surface and velocities were reduced considerably compared with simultaneous
filling of the locks (Plates 11 and 12). The maximum surge in water-surface ele-
vation occurred at station 2. Filling the locks lowered the water-surface eleva-
tion about 0.4 ft at station 1, 1.0 ft at station 2, 1.1 ft at station 3, and 0.6 ft at
stations 4 and 5 (Plate 11). The interaction between the filling of the first lock
and the second lock disrupted the wave pattern at station 1, resulting in short-
period waves with a magnitude of about 0.5 ft. Depending on the station
observed, areturn surge occurred about 30 to 50 min after the first lock began
filling. Thissurge raised the water-surface elevation about 0.8 ft over flat pool
at station 2, 0.3 ft at station 3, and lessthan 0.1 ft at stations 4 and 5. Some surg-
ing in water-surface elevation was still occurring at all stations approximately
140 min after the start of lock filling, with a change of 0.4 ft at station 2 being
the largest recorded. Data presented in Plate 12 show that the velocities of the
currents generated by filling both locks with a 10-min delay between the start of
filling varied from a positive 1.1 to anegative 0.4 fps at station 1, a positive 1.9
to anegative 1.1 fps at station 2, and a positive 2.2 to a negative 1.5 fps at sta-
tion 3. Approximately 130 min after the start of lock filling, the velocities of the
currents were still fluctuating at station 3 from a positive 0.6 to a negative
0.6 fps.

Both locksfilling, second lock delayed 20 min. When the start times of
filling the locks were separated by 20 min, the magnitudes of surges in water-
surface elevations were generally the same as those measured with a delay of
10 min except at station 1 (Plate 13). Filling the locks lowered the water-surface
elevation about 1.4 ft at station 1, 1.1 ft at station 2, 0.8 ft at station 3, and
0.2-0.3 ft at stations 4 and 5. Depending on the station observed, areturn surge
occurred about 20 min after the start of filling the first lock. This surge raised
the water-surface elevation about 0.9 ft over flat pool at station 1, 1.0 ft at sta-
tion 2, 0.2 ft at station 3, and lessthan 0.1 ft at stations4 and 5. Some surging in
water-surface elevation was still occurring at all stations approximately 140 min
after the start of lock filling with a change of about 0.4 ft being recorded at sta-
tions 1, 2, and 3. Data presented in Plate 14 show that the velocities of the cur-
rents generated by filling both locks with a 20-minute delay were generally less
than those measured when the lock fillings were separated by 10 min. Filling the
locks created velocities that varied from a positive 0.9 to a negative 0.1 fps at
station 1, a positive 1.0 to anegative 0.5 fps at station 2, and a positive 2.2 to a
negative 0.5 fps at station 3. Approximately 140 min after the start of lock fill-
ing, the velocities of the currents were still fluctuating at station 3 from a posi-
tive 0.4 to anegative 0.1 fps.
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Both locksfilling, second lock delayed 30 min. When the start times of
filling the locks were separated by 30 min, the magnitudes of surges in water-
surface and vel ocities were |ess than those measured when the two locks were
filled simultaneously. However, the total response increased compared with
10- or 20-min delays of filling of the second lock. Data presented in Plates 15
and 16 show that delaying the filling of the second lock 30 min created a surge
that interacted with the existing surge created by filling the first lock. This
interaction created a larger surge than the other delay times. The maximum
surge occurred about 35 min after the start time of filling the first lock. Filling
thefirst lock initially lowered the water-surface elevation about 1.0 ft at station
1, 0.9 ft at station 2, 0.7 ft at station 3, and 0.3 ft at stations4 and 5. A return
surge occurred about 20 min after the start of filling. This surge raised the
water-surface elevation about 1.2 ft at station 1, 1.0 ft at station 2, 0.5 ft at sta-
tion 3, and 0.1-0.2 ft at stations 4 and 5. Filling the second lock lowered the
water surface below flat pool 1.5 ft at station 1, 1.2 ft at station 2, 0.8 ft at station
3, and about 0.5 ft at stations4 and 5. Some surging in water-surface elevation
was still occurring at all stations approximately 140 min after the start of lock
filling with a change of about 1.0 ft being recorded at station 1. Filling the locks
created maximum velocities that varied from a positive 0.7 to a negative 0.3 fps
at station 1, a positive 1.6 to a negative 1.1 fps at station 2, and a positive 2.6 to a
negative 1.8 fps at station 3. Approximately 140 min after the start of lock fill-
ing, the velocities of the currents were still fluctuating at station 3 from a posi-
tive 0.6 to anegative 0.6 fps.

Dynamic tow experiments. Navigation conditions were satisfactory for
tows entering and leaving the locks provided tows did not meet and passin the
L& P Canal (Plates 17-20). Downbound tows could enter the L& P Canal, align
with the navigation span of the Conrail Railroad bridge, transit the canal, make
the turn into the approach of the new lock, and land on the upper guide wall
without any major difficulties. However, the clearance between the tow and the
piers of the navigation span of the railroad bridge was small, and the tow occu-
pied most of the canal asit turned to align with the guide wall of either lock
(Plates 17 and 18). An upbound tow could be lying on the guide wall of the
opposite lock as the downbound tow approached the guide wall of the other lock.
Upbound tows could leave the lock and navigate through the railroad bridge
without any difficulties. However, the tow occupied most of the canal when
turning from the lock approach into the canal (Plates 19 and 20). The alignment
of the left bank of the canal in the bend immediately upstream of the new lock
was satisfactory for tows entering and leaving the new lock.

Navigation conditions for tows transiting the L& P Canal during lock filling
could be hazardous. Downbound tows approaching the railroad bridge or either
of the guide walls for the locks could be moved into the structures with consider-
able force due to the unexpected acceleration of the currentsin the canal. Down-
bound tows navigating in an area 2,000 ft upstream of the guide walls and
1,000 ft downstream of the railroad bridge would experience surging in the
velocities of the currents. However, they could probably maintain control of the
vessel without any major difficulties provided no other tows are moving in the
canal. Upbound tows would experience some surging in the velocities of the
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currents in the canal but could probably maintain control and navigate the canal
safely. However, some difficulty could occur if amajor surge occurred when an
upbound tow was navigating through the railroad bridge.

Static tow experiments. Experiments were conducted to evaluate the effects
of lock filling and emptying on towsin the L& P Canal during lock filling. A
tow was placed at three locations along the path and at the expected orientation
of atow navigating the canal, and alock filling cycle was executed. During the
lock filling cycle, the path and speed of the tow were recorded. Generally the
tow moved downstream during the filling cycle, came to a stop asthe surge
reversed direction, and moved upstream with the surge. This movement was
repeated several times as the surge continued in the canal. The tow obtained the
greatest speed during the initial move downstream when the lock was filling.
The tow paths and maximum speed are shown in Plates 21-29. A tow in the
entrance to the L& P Canal during filling of a single lock would be moved down-
stream toward the railroad bridge at a speed of 1.6 to 1.9 fps (Plates 21 and 22).
During a simultaneous filling of both locks, the tow would be moved down-
stream toward the railroad bridge at a speed of about 4.9 fps (Plate 23). These
experiments show the speed of an underway tow could also be accelerated 1.6 to
1.9 fpsduring asingle lock filling or 4.9 fps during a simultaneous filling of both
locks. A tow at Surge Station 2 was moved downstream at 4.0 fps during a
single lock filling and 5.1 fps during simultaneous filling of both locks (Plates
24-26). A tow placed in the canal about 2,000 ft upstream of the guide walls was
moved downstream toward the locks at a speed that varied from 1.7 to 2.2 fps by
asingle lock filling. The speed was influenced by the position of the tow in the
canal and which lock wasfilling (Plates 27 and 28). A tow placed in the canal
about 2,000 ft upstream of the guide walls when both locks were filled simul-
taneously was moved downstream toward the locks at about 3.1 fps (Plate 29).

Results of lock emptying experiments with Plan A, Scheme 1

Plan A, Scheme 1, provided alock emptying system with a diffuser in the
lower lock approach between the walls of the new 1,200-ft lock to carry one-half
of the flow from lock emptying. The remaining one-half of the flow from lock
emptying was routed through a culvert extending from the north wall of the new
1,200-ft lock. The culvert extended under the existing 1,200-ft lock and dis-
charged through an existing discharge bucket into the back channel between the
existing 1,200-ft lock and Sand Island (Figure 12). The locks were operated to
simulate a 10-min emptying curve. Surges in water-surface elevation and veloci-
ties of currents created by lock emptying are shown in Plates 30-35.

Existing lock emptying. Emptying the existing lock created surgesin water-
surface elevation and velocities of currents similar to those produced with exist-
ing conditions. The maximum surge in water-surface elevation of about 0.7 ft
was recorded at station 1 in the channel between the existing lock and Sand
Island. Surges in water-surface elevation of lessthan 0.5 ft were recorded at sta-
tions 2, 3, and 4. Surgesin velocities of the currents due to emptying the exist-
ing 1,200-ft lock are shown in Plate 31. These data show surgesin velocities of
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about 2.7 fps at station 1, 0.6 fps at stations 2 and 3, and 1.3 fps at station 4.
Secondary surges were minor at all stations.

New lock emptying. The results of measurements made during emptying of
the new 1,200-ft lock are shown in Plates 32 and 33. These data show that
surges in water-surface elevation were generally the same as those measured dur-
ing emptying of the existing lock. However, a dight change in the magnitude at
station 2 was recorded. The maximum change in water-surface elevation was
about 0.7 ft. Lock emptying created a surge in the current velocities of about
1.8 fpsat station 1, 2.4 fps at station 2, 1.1 fps at station 3, and 0.9 fps at
station 4.

Both locks emptying. Measurements made during simultaneous emptying of
both locks are shown in Plates 34 and 35. Compared with existing conditions,
these data show an increase in the magnitude of the velocities at station 1, where
all of the existing lock and one-half of the new lock were discharging through
the existing riverside buckets. However, thisincrease would not adversely affect
navigation in the lower lock approach, which is protected by the riverside guard
wall of the existing lock. The velocities of the currents at station 2 varied from a
positive 1.8 fps to a negative 0.4 fps due to lock emptying for an overall change
invelocities of 2.2 fps. A surge in the water-surface elevation of about 1.0 ft
was measured at station 2.

Static tow experiments. Experiments were conducted to evaluate the effects
of lock emptying on atow placed in the lower lock approach. An untethered tow
was placed at selected locations in the lower lock approach, and the path and
speed of the tow were measured during the emptying cycle. A tow resting along
the downstream guide wall of the new lock, either near the lock or at the mid-
point of the wall, was moved downstream at a slow speed by emptying the exist-
ing lock (Plates 36 and 37). A tow resting along the downstream guard wall of
the existing lock, either near the lock or the midpoint of the wall, was moved
downstream at a slow speed with very little rotation (Plates 38 and 39). This
condition issimilar to conditions that existed in the field at the time of this

study.

Emptying the new lock chamber created downstream flow along the new
guide wall with alarge clockwise eddy forming along the existing guard wall.
When atow was resting on either lower wall near the lock chamber, emptying
the new lock affected the tow more than emptying the existing lock. Thiswas
due to the diffuser being located immediately downstream of the miter gate of
the new lock and one-half of the lock discharge being directly upstream of the
tow. A tow resting near the lock was moved downstream and rotated riverward
during emptying of the new lock (Plate 40). After the lock was emptied, the tow
was moved back toward the guide wall of the new lock. Theinitial movement of
the tow would be difficult to control unless the tow was tied to a mooring bit. A
tow resting on the guide wall of the new lock at about midpoint of the wall was
moved downstream slowly without any major rotation of the tow (Plate 41). A
tow resting on the guard wall of the existing 1,200-ft lock during emptying of the
new lock chamber was rotated clockwise with very little movement downstream
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(Plate 42). The rotation was slow and could be controlled without any major
difficulty. A tow resting on the guard wall near the midpoint of the wall was
moved downstream slowly without any major rotation (Plate 43).

Emptying both lock chambers simultaneously initially created downstream
flow along the new guide wall and a clockwise eddy along the guard wall similar
to emptying the new lock chamber. However, emptying the existing chamber
and one-half of the new chamber into the channel between the locks and Sand
Island increased the flow through the guard wall and into the lower approach of
thelocks. Thisflow reduced the size of the eddy and increased the downstream
flow in the approach compared with emptying the new chamber. Data shown in
Plates 44-47 indicate that atow resting on either the guard wall or the guide wall
near the lock chamber while both locks are emptied simultaneously would expe-
rience movements that would be difficult to control. A tow resting along the
new guide wall near the lock chamber was moved downstream along the wall
without much rotation. When the tow had moved downstream far enough to
expose about half the tow to currents moving across the lower end of the guard
wall, the tow was rotated counterclockwise (Plate 44). Theinitial movement
downstream would be difficult to control. A tow resting along the new guide
wall at about midpoint of the wall was moved downstream by the initial surge
and rotated counterclockwise asit cleared the downstream end of the guide wall
(Plate 45). The movement of the tow could be controlled without any major
difficulty.

A series of experiments was conducted to evaluate the effects of lock empty-
ing on asmall boat waiting in the lower approach to the lock to lock through to
the upper pool. The results of these experiments are shown in Plates 48 and 49.
These data show that a small boat waiting near the downstream end of the new
lock chamber when the lock was emptied would be moved downstream at a
maximum speed of about 4.5 fps with considerable rolling motion. However, a
small boat could wait at the midpoint of the new guide wall during lock empty-
ing without any major difficulties (Plate 49).

Results of lock emptying experiments with Plan A, Scheme 2

Plan A, Scheme 2, was generally the same as Scheme 1. However, the dif-
fuser in the lower lock approach immediately downstream of the miter gates of
the new 1,200-ft lock was moved to the area between the existing and new locks
(Figure 13). Thediffuser still carried one-half of the flow from lock emptying.
The remaining one-half of the flow from lock emptying was passed through a
culvert extending from the north wall of the new 1,200-ft lock. The culvert
extended under the existing 1,200-ft lock and discharged through an existing dis-
charge bucket into the back channel between the existing 1,200-ft lock and
Sand Island the same as with Plan A, Scheme 1.

Lock emptying. The results of measurements made with Scheme 2 are
shown in Plates 50-53. These data show the surges in water-surface elevation
and velocities were generally the same as with Scheme 1. However, the current
pattern created by lock emptying was considerably different from Scheme 1 due
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to the placement of the diffuser. Generally the flow was more evenly distributed
across the lower approach than with Scheme 1. Emptying the new lock created a
surge in the current velocities of about 1.8 fps at station 1, 2.0 fps at station 2,
1.0fpsat station 3, and 0.9 fps at station 4. Emptying both locks simultaneously
created surgesin velocities of about 3.1 fps at station 1, 2.3 fps at station 2,

14 fpsat station 3, and 1.6 fps at station 4.

Static tow experiments. Results of static tow experiments are shown in
Plates 54-61. These experiments show that the effects of surges created by
emptying the new 1,200-ft lock on tows in the lower lock approach were less
than those with Scheme 1. The flow from the diffuser between the locks was
more evenly distributed across the lower approach and did not directly affect a
tow waiting on either the riverside or landside wall. The flow moved the tow
downstream at a slow speed with minimal turbulence. The influence of lock
emptying on atow in the lower lock approach was generally the same when both
locks were emptied simultaneously except when the tow was waiting on the
riverside wall near the lock chamber (Plate 60). The increased flow through the
riverside guard wall due to both locks emptying in the river moved the tow away
from the wall and rotated it clockwise. The downstream movement was gener-
aly less than 2.0 fps and could be controlled without any major difficulties.

Results of experimentsto evaluate the effects of lock emptying on a small
boat waiting in the lower approach to lock through to the upper pool are shown
in Plates 62-69. These data show that a small boat waiting near the downstream
end of the new lock chamber when the lock was emptied could be moved either
downstream (Plate 62) or upstream into the flow from the diffuser (Plate 66).
This could create a hazardous situation for small boats. However, if the small
boat waited further downstream at the midpoint of the wall, downstream move-
ment was less and did not present any major difficulties (Plates 63 and 67).
There was a tendency for lock emptying to move the boat away from the river-
sidewall (Plates 64 and 65). However, the turbulence and the pitching and roll-
ing of the boat were minimal.

Results of lock emptying experiments with Plan A, Scheme 3

Scheme 3 of Plan A was generally the same as Scheme 2 of Plan A. How-
ever, two diffusers were in the area between the new and existing locks. These
diffusers carried all of the flow from the new 1,200-ft lock, and the river dis-
charge bucket was not used (Figure 14).

New lock emptying. Data presented in Plates 70-73 show that discharging
al of the flow from emptying the new lock in the lower approach of the locks
increased the surges in water-surface elevation and velocities compared with
Schemes 1 and 2. However, the flow was evenly distributed across the lower
approach except near the lock chambers. Water-surface elevation was increased
about 1.0 ft at station 2, 0.8 ft at station 3, and 0.4 ft at station 4 due to emptying
the new lock (Plate 70). Surgesin velocities were measured to be about positive
3.4 fpsat station 2, positive 1.5 fps at station 3, and positive 1.2 fps at station 4
(Plate 71).
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Both locks emptying. Surgesin water-surface elevation and velocities were
about the same when both locks were simultaneously emptied except at sta-
tions 1 and 4, which were influenced by emptying the existing chamber in the
channel between the locks and Sand Island.

Static tow experiments. Results of static tow experiments are shown in
Plates 74-81. These experiments show that the effects of surges created by
emptying the new 1,200-ft lock on tows in the lower lock approach were gener-
ally the same as with Scheme 2. The flow from the diffusers between the locks
was evenly distributed across the lower approach and did not directly impact a
tow waiting on either the riverside or landside wall. The flow moved the tow
downstream at a slow speed with a minimum amount of turbulence. The influ-
ence of lock emptying on atow in the lower lock approach was generally the
same when both locks were emptied simultaneously. The downstream move-
ment was generally less than 2.0 fps and could be controlled without any major
difficulties.

Results of experimentsto evaluate the effects of lock emptying on a small
boat waiting in the lower approach to lock through to the upper pool are shown
in Plates 82-89. These data show that a small boat waiting at any point along the
landside guide wall when the new lock was emptied moved downstream along
thewall at less than 2.0 fps with a minimum amount of pitch or roll (Plates 82
and 83). A small boat waiting at the midpoint of the guard wall when the new
lock was emptied moved downstream along the wall at less than 2.0 fps with a
minimum amount of pitch or roll (Plate 85). A small boat waiting near the
downstream end of the existing lock when the new lock was emptying could be
moved out into the flow from the diffusers by the flow moving beneath the guard
wall (Plate 84). However, the boat was moved downstream at less than 2.0 fps
and with a minimum amount of pitching and rolling. A small boat could control
the movement by tying to the wall or by using some power. Conditions for small
boatsin the lower lock approach were generally the same when both locks were
emptied simultaneously (Plates 86-89).

Plan B Experiments

Description

Plan B was the same as Plan A, except the L& P Canal was dredged to project
depths near the railroad bridge, and part of the lower guide wall of the new lock
was removed. The guide wall was 640 ft long with the downstream end at sta-
tion 39+90. Early in the study, excavation of the left bank of the canal immedi-
ately upstream of the lock was proposed as a feature of Plan B to provide
additional maneuvering area for tows entering and leaving the new lock. How-
ever, in the preliminary design phase of the study the new lock was moved about
50 ft north of the originally proposed location, providing better alignment with
the existing left bank. The relocated lock was a part of Plan A, and navigation
experiments with that plan indicated additional excavation of the left bank in the
bend was not necessary.
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Results of lock filling experiments

Experiments were conducted to record surges in water-surface elevation and
current velocities. These data are shown in Plates 90-93. These data show that
the surges in water-surface elevation and vel ocities were generally the same as
Plan A surges, except those at station 3, where the surges were less.

Filling onelock. Theinitial surge in water-surface elevation dueto filling
one lock decreased the water surface about 1.1 ft at stations 1 and 2, 0.6 ft at
station 3, and 0.3 ft at stations 4 and 5 (Plate 90). The velocity of the currents
dueto lock filling varied from about a positive 0.9 fps to a negative 0.5 fps at
station 1, apositive 1.4 fpsto a negative 0.8 fps at station 2, and a positive
1.4 fpsto anegative 1.0 fps at station 3 (Plate 91).

Both locksfilling. Filling both locks simultaneously decreased the water-
surface elevation about 2.6 ft at station 1, 2.0 ft at station 2, 1.1 ft at station 3,
and 0.6 ft at stations 4 and 5 (Plate 92). The velocity of the currents created by
lock filling varied from about a positive 2.0 to a negative 0.8 fps at station 1, a
positive 2.5 to anegative 1.5 fps at station 2, and a positive 3.0 to a negative
1.9 fpsat station 3 (Plate 93).

Static tow experiments. Static tow experiments show that the path and
speed of the tow were generally the same aswith Plan A. Dredging near the
railroad bridge did not significantly reduce the acceleration of atow in the canal
dueto lock filling. However, the lower velocity of the currents should reduce
the maneuvering required for the tow to navigate through the bridge.

Results of lock emptying experiments

Lock emptying experiments were conducted with two diffusersin the area
between the new and existing locks, the same as with Plan A, Scheme 3. Dye,
confetti, and the movement of an untethered tow during lock emptying were
observed to evaluate the effects of lock emptying on navigation in the lower lock
approaches. These experiments showed that shortening the new guide wall did
not adversely affect navigation in the lower lock approach.
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4 Results and Conclusions

Limitations of Model Results

Analysis of the results of this investigation is based on a study of the effects
of various plans and modifications on water-surface elevations and current direc-
tions and velocities and the effects of the resulting currents on model towboat
and tow behavior.

The scale of the model allowed water-surface elevations to be measured to
accuraciesof 0.1 ft prototype. Current velocities could be measured to accura-
ciesof 0.1 fps prototype. The model was a fixed-bed type and not designed to
reproduce overall sediment movement that might occur in the prototype with the
various plans. Therefore, changes in channel form resulting from scouring and
deposition and any resulting changes in current directions and velocities were
not evaluated.

Summary of Results and Conclusions

Lock filling experiments show that some major difficulties could occur for
tows transiting the L& P Canal if the locks are filled while the tows arein the
area. Downbound tows could experience hazardous navigation conditions if
either or both of the locks are filled when the tow is approaching the railroad
bridge. The experiments show that the velocity of the currents would vary from
O0to 3.8 fpsinaslittle as 10 min in this region and would significantly increase
the speed of thetow. Depending on the location and orientation of the tow
when the surge occurred, there was a tendency for the tow to be moved into the
left bank or the upstream protection cells of the navigation span of the bridge.

Operational procedures could reduce the surges caused by lock filling and
improve navigation conditions but could not eliminate all adverse effects on
navigation inthe L& P Canal. Thetiming of the operational procedureswould be
critical and, therefore, is not recommended as a solution to the problem.

Dredging the L& P Canal near the railroad bridge (Plan B) would not elimi-
nate the adverse effects of lock filling on tows navigating the L& P Canal.
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Plan A, Scheme 1, emptying system created adverse conditions for atow
waiting on the landside guide wall immediately downstream of the lock during
emptying of the new lock. The tow was moved downstream and rotated river-
ward during emptying and then moved back toward the guide wall of the new
lock. Theinitial movement of the tow would be difficult to control unless the
tow wastied to a mooring bit.

Tows could wait at the midpoint of the landside guide wall during emptying
of the new lock without any major difficulties.

Small boats could not wait immediately downstream of the new lock during
emptying of the lock. The boat would be moved downstream and would pitch
and roll due to the turbulencein the area. However, the small boat could wait at
the midpoint of the wall without any difficulty.

Plan A, Scheme 2, emptying system provided satisfactory conditions for tows
waiting on either the landside or riverside walls during lock emptying. However,
small boats waiting near the downstream end of the new lock could be moved
upstream into the discharge from the diffuser, which could create a hazardous
situation.

Although the Plan A, Scheme 3, emptying system created the highest surgein
velocitiesin the lower approach of the three plans, the flow was evenly distri-
buted across the lower approach. The effects of lock emptying was generally the
same as with Scheme 2.

The shorter downstream guidewall for the new lock (Plan B) provided satis-
factory navigation conditions for tows entering and leaving the lower lock
approach.
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